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Abstract

In this brief survey, we outline the inductive biases of using stochastic gradient
descent (SGD) to train deep neural network. Specifically, we focus on biases of
SGD towards simple solutions which lie in broad loss basins, two aspects hypoth-
esized to be responsible deep networks’ remarkable generalization performance.
Our exposition emphasises intuition and breadth over rigor and depth.

1 Introduction

The inductive biases of a deep learning training procedure are the set of factors which bias the process
towards specific classes of solutions over others. Understanding these factors enables reasoning
about the properties of the learned solutions, critical for advancing the science and safety of artificial
intelligence.

We focus on biases hypothesized to be at the heart of deep networks impressive generalization
capabilities, that is biases towards solutions which are simple and lie in flat regions of the loss
landscape. We discuss several notions of simplicity, why we expect networks trained with SGD to
exhibit these simplicity biases, and how simplicity changes over the course of training. We then
review the sources of noise within stochastic gradient descent, how this noise biases training towards
flat regions of parameter space, and why this implies a bias for data compression.

Finally, we note that the inductive biases of neural network training are complicated and emanate from
a variety of sources, including the architecture, hyperparmaters, optimizer, and temporal dynamics.
Throughout, we attempt to identify the primary source of the bias as relevant.

2 Simplicity

Motivated by arguments from Occam’s Razor and the bias variance tradeoff, a common desiderata of
a statistical learning algorithms is a bias towards simplicity. Despite violating classical formalizations
of simplicity (like parameter count), deep networks trained via SGD are observed to generalize
extremely well. This is hypothesized to be, in part, a consequence of a simplicity bias of SGD. While
simplicity is an intuitive concept, it has proved challenging to mathematically operationalize in a
sufficiently general manner.

2.1 Types of simplicity biases

Rank Bias One potential definition of complexity is the rank of the weight matrices of a model,
given that rank defines the effective dimensionality of the output of a linear operator. [22] show that
ReLU networks of sufficient depth are provably biased towards low-rank solutions when optimized
with gradient flow (GF) methods. In a more general setting, [7] show that training a network with
SGD with small batch size, will induce low rank weights even in networks with convolutional layers,
residual connections, and batch normalization layers. Their analysis, based on the observation that
∂f/∂Wi is a matrix of rank ≤ 1, suggests that the SGD batch size bounds the rank of the network



weight matrices, that weight decay is a necessary condition for low rank bias, and that larger learning
rates further biases the network to have smaller rank.

However, the extent to which this low rank bias is a property of the optimizer versus a property of
neural networks is not clear. In particular, [10] observe that even at initialization, deep networks
are biased towards low rank transformations. Furthermore, these biases continue to exist through
training, when using either gradient or non-gradient based optimization (e.g., random search). They
conjecture that rank regularization is primarily driven by network depth given how the volume of
functions with low effective rank increases with depth and provide empirical evidence for this. The
intuition is that the rank of a product of matrices is bounded above by the lowest rank matrix in the
product, making it more likely that functions parameterized by the product of many matrices to be of
decreasing rank with increasing depth.

Spectral Bias Another form of simplicity is the spectrum of learned features, with low frequency
features being more simple than high frequency features. Using tools from Fourier analysis [18], show
that deep networks prioritize learning low frequency features first before minimizing the residuals
of more complex features, and that the simple features are more robust and generalizable. [24] add
more nuance by studying the spectrum of the Conjugate Kernel (CK; what the network looks like at
initialization) and the Neural Tangent Kernel (NTK; what the network looks like during and after
training). In particular, they analyze the interplay between the hyperparamters and the frequency
bias to show that: a) it is not universal (switching ReLU activations for sigmoids mostly negates
the effect), b) deeper networks learn more complex features, but that there exists an optimal depth
for which it can be detrimental to exceed, c) for complex features, training all layers together is
better than just tuning the last layer, but vice versa for simple features, and d) there exists a maximal
nondiverging learning rate.

Subsequent work describes how to further modulate this effect with architectural choices. For example
[25] amplify, dampen, counterbalance, or reverse the intrinsic frequency biasing by replacing the loss
function with a Sobolev norm and [9] show how how using the Hat function as the activation function
removes the spectral bias.

Effective Depth Given the increase of expressively when adding more layers to a deep network,
another potential measure of simplicity is the "effective depth" of the network. This notion is
motivated by the phenomena of neural collapse (NC) where the representations of the second-to-last
layer of a classification network cluster to their class means [16]. To formalize effective depth, [6]
measure the first layer for which sample embeddings are separable using the nearest-class center
classifier. They further hypothesize that SGD has an implicit bias for networks with smaller effective
depth, and provide positive empirical evidence. This agrees with a natural intuition of SGD: it is
easier to learn smaller circuits as it is difficult to get many layers to coordinate together, hence SGD
should bias towards circuits of smaller intrinsic depth. Such an intuition is supported by evidence
from [23], who show that residual networks behave like ensemble of shallow networks with short
path lengths (i.e., small effective depth).

Geometric Complexity Recently, [5] proposed what is currently the most comprehensive measure:
geometric complexity. Drawing from the theory of harmonic functions and minimal surfaces, they
attempt measure complexity as the variability of the model function, computed using a discrete
Dirichlet energy.

Definition (Geometric Complexity) [5]. Let gθ : Rd → Rk be a neural network parameterized by θ.
We can write gθ(x) = a (fθ(x)) where a denotes the last layer activation, and fθ its logit network.
The GC of the network 2 over a dataset D is defined to be the discrete Dirichlet energy of its logit
network:

⟨fθ, D⟩G =
1

|D|
∑
x∈D

∥∇xfθ(x)∥2F ,

where ∥∇xfθ(x)∥F is the Frobenius norm of the network Jacobian.

This metric captures the basic intuition that, for simple functions, small changes in input (around the
training data) should have a small change in output. For linear transformations defined by A the GC
is dataset independent and exactly ∥A∥2F . This coincides exactly with an l2 norm penalty, hence l2
regularization corresponds to regularizing the geometric complexity in the linear setting. For ReLU
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networks, the GC over the whole dataset is simply the GC over a particular batch B ⊂ D. This is
helpful as it enables measuring GC batchwise rather than on the whole dataset provided the batches
are sufficiently large.

The authors go on to show how many popular training techniques explicitly or implicitly regularize
the geometric complexity. This includes

1. Common initialization schemes: sampling from truncated normal Gaussians with variance
inversely proportional to the number of input units has initial GC near 0, with distance to 0
being inversely proportional to network depth.

2. Common explicit regularization: increased l2, spectral, and flatness regularization are all
shown to empirically also decrease the GC.

3. Recently identified forms of SGD implicit regularization, such as step-size regularization [2],
Sobolev regularization [12], and batch effect regularization [21] also implicitly regularize
GC.

Again, geometric complexity highlights the complicated interplay between the inductive biases of the
network, the optimization algorithm, and the training procedure.

Pitfalls of simplicity Finally, while a simplicity bias (SB) can have appealing statistical properties,
this simplicity is not without its drawbacks. After defining simplicity in terms of the learned decision
boundary, [20] make four observations (in their words):

(i) SB of SGD and variants can be extreme: neural networks can exclusively rely
on the simplest feature and remain invariant to all predictive complex features.
(ii) The extreme aspect of SB could explain why seemingly benign distribution
shifts and small adversarial perturbations significantly degrade model performance.
(iii) Contrary to conventional wisdom, SB can also hurt generalization on the same
data distribution, as SB persists even when the simplest feature has less predictive
power than the more complex features.
(iv) Common approaches to improve generalization and robustness—ensembles
and adversarial training—can fail in mitigating SB and its pitfalls.

2.2 Training Dynamics

Part of what makes neural networks so challenging to study is that they cannot be understood as a fixed
artifact, but rather the product of complex learning dynamics occurring during training. Therefore, an
important aspect of understanding complexity, is understanding how it changes over the course of
training. [15] show that in the initial epochs of training, almost all of the performance improvement
of the classifier obtained by SGD can be explained by a linear classifier, but with additional iterations,
SGD learns functions of increasing complexity. Importantly, they also that the linear classifier learned
in the initial stages is retained throughout training, giving evidence to the hypothesis of implicit
gradient boosting where the network learns an initial weak model, and then iteratively fits the residual
errors with more complex functions.

Similar to learning functions of increasing complexity, [19] show that deep networks trained with
SGD learn to model distributions of increasing complexity. In particular, they show that such
networks "classify their inputs using lower-order input statistics, like mean and covariance, and
exploit higher-order statistics only later during training."

Finally, [13] empirically relate the parameter norm of full scale transformer models to the dynamics
of training with SGD. In addition to simply showing that parameters grow in magnitude, they prove
that the network approximates a discretized network with "saturated" activation functions. A saturated
network is a restricted network variant whose discretized representations are understandable in terms
of formal languages and automata, potentially offering a more interpretable formalism to study large
language models.
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3 Broad Minima

Moving beyond simplicity, we describe SGD’s bias for converging to extreme points in broad loss
basins, how this is helpful for generalization, and why this implies an inductive bias towards data
compression.

3.1 Breadth Bias

Broad optima, that is local minima where the loss hessian has many 0 or near zero eigenvalues,
have long been hypothesized for explaining the generalization performance of neural nets [4, 3].
Perhaps the simplest intuition for this, is to consider the distribution shift between the training and
test sets. For broader training loss basins, just as we can change the parameters more while preserving
performance, it is likely we can change the data distribution more while preserving performance.
Recently, [3] formalize this intuition with the notion of shift curvature, that is the amount of curvature
of the loss surface in the direction between the train and test minima. Of course, this direction is
unknown a priori, and therefore the best policy is to minimize the loss curvature in all directions, in
other words, to find a broad basin. Many, including [3], have identified the noise induced by SGD, as
the crucial factor that drives SGD’s bias for broad minima.

Batch noise The basic intuition is that with minibatch SGD, any local minima for one batch is
unlikely to be a local minima for another batch, unless it is an especially broad minima, that is, a
minima which generalizes across batches. Therefore, if SGD converges, we should expect the optima
to be broad, that is to generalize to all of the different batches (and likely also out of distribution).
A simple experiment to test this intuition is to study the effect of batch size on generalization. [11]
run this experiment and find "when using a larger batch there is a degradation in the quality of the
model, as measured by its ability to generalize...present numerical evidence that supports the view
that large-batch methods tend to converge to sharp minimizers of the training and testing functions...
In contrast, small-batch methods consistently converge to flat minimizers."

[27] study the conditions for which this noise is helpful for escaping local minima (the Hessian
being ill conditioned and the noise covariance being aligned with the Hessian) and show that the
anisotropic noise in SGD satisfies both these properties. Similarly, [8] show that the multiplicative
noise caused by variance in the local rates of convergence leads to heavy tailed stationary behavior in
the parameters enabling more efficient exploration of the loss surface for nonconvex functions. By
connecting the loss curvature with respect to the parameters to the curvature with respect to the input
data, [12] show that flat minima regularize the gradient of the learned function (i.e., the geometric
complexity), and that SGD implicitly regularizes the Sobolev seminorms of the learned function with
respect to the data leading to improved generalization and robustness. Finally, [26] show that the
escaping time of SGD depends on the Radon measure of basin positivity and the heaviness of the
gradient noise negatively. They then use this to explain why SGD escapes basins faster than ADAM:
(a) by adaptively scaling each gradient, ADAM reduces the anisotropic structure of the gradient noise
and (b) by smoothing past gradients, ADAM dampens the gradient noise tails compared to SGD.

Step noise Stochasticy of the minibatch is not the only source of noise is SGD. SGD takes non
optimal step sizes in discrete time, rather than an idealized continuous gradient flow. In addition to
making learning computationally tractable, these discrete steps insert further noise into the training
process. That is, after each step, gradient descent actually steps off the exact continuous path
that minimizes the loss at each point. [2] show that this divergence induces a form of implicit
regularization by penalizing gradient descent trajectories that have large loss gradients. Furthermore,
they show this implicit regularization is proportional to the square of the loss surface slope, enabling
the design of an explicit regularization penalty when the organic effect is not strong enough. Both the
implicit and explicit regularization biases training towards optimization paths with shallower slopes
and optima in flatter loss basins.

This implies that the learning rate (step size) should have a large effect on the optimization. Indeed,
folk wisdom in the ML community has it that there exists a Goldilocks step size: too small and
training will be too slow or get stuck in a local optima, too large and training may diverge. [1] show
that these middle ground step sizes lead the iterates to jump from one side of a valley to the other
causing loss stabilization, as opposed to too large of a step which causes the iterate to jump wholly out
of the valley. They show that this loss stabilization "induces a hidden stochastic dynamics orthogonal
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to the bouncing directions that biases it implicitly toward simple predictors," where simplicity is
operationalized as sparsity of representations. This is suggestive of an intriguing connection between
SGD inductive biases and compositional sparsity [17]

3.2 Compression Bias

Next we describe how this bias towards broad optima implies a bias towards data compression in the
overparameterized regime. When optimizing overparameterized functions, there are many global
optima that lie on high dimensional ridges or subspaces, rather than isolated peaks. The natural
question then, is which point does SGD converge to?

To study this, lets consider two possible parameter settings θ1 and θ2 of N parameters in a deep
network that achieve perfect training loss. θ1 uses k1 parameters to fit the data with k1 ≈ N where
as θ2 uses k2 ≪ N parameters, implying that θ2 does compression of the data to learn a smaller
model. Now if we consider the first order Taylor approximation around the the minimum, we have
N −k1 basis directions that preserve optimality for θ1, while for θ2 there are N −k1 ≫ N −k2 basis
directions. Of course the volume of the space grows exponentially with dimensionality so the optimal
subspace surrounding θ2 is exponentially bigger than θ1. Hence, in general, there are exponentially
more solutions which compress the data. [14] show that all of these solutions are approximately
equally likely to be found by gradient descent conditioned on optimality. Therefore, conditioned on
finding a zero loss solution, the probably of it compressing the data approaches one as we increase
model size. Finally to bring things full circle, solutions which compress the data have Hessians with
many zero eigenvalues, and therefore lie in broad loss basins, and therefore also generalize.

However the only place where SGD was implicitly used in this argument was to motivate the
assumption that we might actually find a solution with perfect training loss in practice. Therefore,
the degree to which this is a bias of SGD or overparameterized optimization in general is not clear.
One might make the claim that SGD does not introduce any bias of the solution conditioned on it
being optimal, but that SGD is biased towards finding optimal solutions, over what one might naively
expect for high dimensional non-convex optimization problems.

Ultimately further research is needed.

4 Conclusion

In conclusion, we explore two major classes of inductive biases of SGD training: simplicity and
broad basins. For simplicity, we explore the many notions of simplicity and their observed biases, in
particular rank bias, spectral bias, effective depth, and geometric complexity, as well as the dynamics
of simplicity over the course of training. We then show that various aspects of the noise of SGD,
both from batches and from discrete steps, help SGD escape local minima and bias the optimization
towards solutions in broad loss basins, where such solutions generalize better and imply a bias
towards data compression.
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