
OPTIMAL POLITICAL DISTRICTING: THE ANCHOR METHOD

Wes Gurnee
MIT ORC

wesg@mit.edu

ABSTRACT

We study the problem of optimal political redistricting. That is, the problem of splitting up a state’s
voting precincts in to k population balanced and continuous regions that are optimal with respect to
one or more objectives, typically involving political (un)fairness. We present a novel formulation,
based on the modeling idea of an anchor, which enables us to solve real scale problems with some
convergence guarantees.

1 Overview

The political districting problem (PDP) is the decision problem of splitting n precincts into k contiguous and population
balanced districts. In the United States, the districts of the House of Representatives are redrawn every 10 years
following the decennial census and reapportionment. Given the outsized influence that district composition has on
electoral outcomes, how districts are drawn and who draws them, is an extremely contentious (read: litigious) matter.
While most districts are drawn by partisan officials with political motives, optimization algorithms offer a more objective
and less biased alternative to redistricting.

The most natural MIP formulations for political redistricting resemble a facility location problem: n binary variables
for each precinct indicating whether to "open a district" at this location (with supply equal to the prescribed district
population), and an additional n2 binary decision variables indicating whether or not precinct j is apart of the district
centered on precinct i (i.e., each precinct has a demand equal to its population, and can only be served by one facility).
Unfortunately, these n2 formulation do not scale to real world problems with O(105) precincts, both due to the
high number of variables, and the higher number of constraints required to enforce contiguity O(kn2). Furthermore,
decomposition algorithms do not work well in this setting due to the massive degeneracy of the primal problem. These
challenges necessitate a different approach.

One of the original solution techniques for the PDP proposed by [1] adopted a heuristic similar to Lloyd’s algorithm
for k-means: fix the centers y, optimize x, update y to be the new centroids, and iterate until convergence. However,
this approach did not explicitly enforce contiguity and only optimized for compactness. We propose a modernized
formulation capable of incorporating the full range of legal constraints. A key part of our approach is based on a
generalization of the center block, which we call an anchor. The purpose of an anchor is to break symmetry and act
as the source node for the flow variables which enforce contiguity. The critical difference, however, is that we can
define an anchor invariant formulation such that for the optimal districting, any choice of anchors (that is, any choice of
precincts in disjoint districts) will yield the same optimal plan. Conceptually, the anchors implicitly define the feasible
space, but by construction, can be decoupled from the objective value. This feature is what makes it possible to create
optimality guarantees.

2 Formulation

In this section, we will assume a set of anchors are given, and describe the inner loop formulation. Our integer
programming model is given below where N is the set of blocks, A ⊂ N is the set of anchors, and E is the edge set of
the adjacency graph. The main decision variables are xij indicating if precinct j is assigned to district (anchor) i. We
enforce that the assignment is a strict partition of precincts (2), are population balanced (3) and contiguous (4-6). We
implement contiguity with flow variables fijk indicating the flow from anchor i that traverses the arc between adjacent

precincts j and k, and require that all precincts demand one unit of flow of type i if assigned to the anchor i.

min f(x) (1)

s.t.
∑
i∈A

xij = 1 ∀j ∈ N (2)

1− ϵ ≤
∑
j∈N

xij p̂j ≤ 1 + ϵ ∀i ∈ A (3)

∑
k∈δ(j)

(fikj − fijk) = xij ∀i ∈ A, j ∈ N (4)

∑
k∈δ(j)

fikj ≤Mxij ∀i ∈ A, j ∈ N (5)

∑
j∈δ(i)

fiji = 0 ∀i ∈ A (6)

ujk ≥ xij − xik ∀i ∈ A, (j, k) ∈ E (7)
(8)

where p̂j is the population of block j divided by the ideal district population, and δ(i) is the set of blocks adjacent to i.

We leave a generic objective f(x) for now, as the hardest part of the PDP is in efficiently enforcing feasibility. An
advantage of this formulation is that it is flexible in accommodating additional modeling logic (i.e., there is no special
structure we must be careful to preserve). In the next section, we describe many such extensions relevant to redistricting,
that will serve as terms in our objective or satisfy legal criteria specific to certain states.

2.1 Extensions

Compactness For many reasons—legal, aesthetic, normative—it is common to either constrain or optimize for
compactness. Here we describe how to incorporate three different notions of compactness: dispersion, flow distance,
and edge cuts/perimeter.

(Dispersion)
∑

dαijxij (9)

Dispersion, sometimes also called moment or inertia when α = 2, is a compactness metric parameterized by α and
seeks to minimize the lα distance of the assignment.

(Flow distance)
∑

wijkfijk (10)

The flow distance metric is much less common, but we noticed that it was very efficient to optimize, because it broke
the symmetry implicit in the flow variables. That is, under this objective, not all flow paths from i to j are of equal cost,
and hence the resulting flow structure will favor compact spanning trees.

(Cut Edges) ujk ≥ xij − xik ∀i ∈ A, (j, k) ∈ E (11)

Lastly, the edge cut formulation is an appealing graph theoretic measure of compactness, as it is scale agnostic, unlike
the dispersion metric. To implement it, we introduce binary variables ujk for each edge which gets set to 1 whenever
xij and xik are different, that is, when blocks j and k are assigned to different districts. We can also add a weight wjk

when summing the edge cuts to get the interior perimeter of the districting plan, which penalizes cutting edges with
long shared borders (this favors aesthetically pleasing districts with clean borders). Another advantage of this measure
is that it is anchor invariant, which we will explain further in Section 3.

Despite all of these advantages, this linear relaxation of the edge cut formulation is terrible. The optimal solution will
set xij = 1

k to make all edge differences 0. We found it was intractable to optimize for all but the smallest synthetic
networks using this objective.

Political Objectives Of course the main set of objectives in political redistricting are political. For simplicity, we
consider two-party election results where vj gives the Republican vote share for block j. Then if v̂j = p̂jvj , we
introduce vote share variables ri and seat share variables ψi

(Vote Share Variables) ri = xTi v̂ ∀i ∈ A (12)

2

(Seat Share Variables) ψi = σPWL(ri) ∀i ∈ A (13)

to model the expected political outcomes of a district plan. Here σPWL is a piecewise linear approximation of the
cumulative density function corresponding to the probability that a seat is occupied by a Republican, given the vote
share ri. Since there are only k ≪ n of these variables, it is feasible to introduce this more elaborate modeling logic.
We note one significant drawback with this approach is the implicit assumption of uniform turnout, to avoid introducing
a fractional formulation.

With these political estimates, we can optimize for different measures of partisan fairness. The most basic measure is
the degree to which the overall expected seat share deviates from some ideal seat share h∗(v).

(Partisan Fairness) min |
∑
i

ψi − h∗(v)| (14)

For pure proportionality, we would let h∗(v) = 1. We note that it is more straightforward to gerrymander than to
optimize for fairness, as partisan advantage can be optimized by simply minimizing or maximizing the sum of ψi.
Another example objective which would be straightforward to implement is maximizing the number of competitive
seats. We can measure competitiveness as the distance of ri from being 50-50, discounted by α:

(Competitiveness) max
∑
i

ti ; ti ≤ max(1− α|0.5− ri|, 0) (15)

Voting Rights Act Another important set of legal constraints are those laid out by the Voting Rights Act (VRA)
on providing sufficient opportunities for minority candidates to get elected. These rules are complicated, and are not
mathematically precise, but we can approximate them by introducing binary variables ygi to indicate whether or not
district i is an opportunity district for group g (though, we could also make these continuous variables corresponding to
a probability estimate).

(VRA Compliance) ygi ≤ α
∑
j

xij p̂j
g;

∑
j

ygi ≥ gmin ∀g (16)

Then, per the laws and demographics of a state, we enforce that the districting plan meet a minimum level of opportunity
for every group.

Boundary Preservation Finally, we consider preservation of existing political subdivisions such as counties, wards,
or townships and/or preserving communities of interest (COI). We note that is trivial to add a hard constraint on two or
more blocks being together: just merge them in the underlying adjacency graph. However, this can lead to feasibility
issues if many of the blocks become merged because the district population tolerances are very strict.

Usually a more practical approach is to again add binary variables indicating whether or not a particular region is kept
whole. If also using an edge cut formulation, one can model this by simply checking if any edges in the region Rt are
cut

(Boundary Preservation I) st ≥ ujk ∀t, ∀(j, k) ∈ E ∩ Ct (17)

However, as discussed previously, the linear relaxation of the ujk is too weak to be tractable at large scale. Another
modeling alternative is to check if the region is fully contained in district i

(Boundary Preservation II) |Ct|(1− sit) ≤
∑
j∈Ct

xij ∀t. (18)

However, this still uses a big-M formulation (i.e., the linear relaxation still is not tight) and requires k times as many
variables.

2.2 Alternate Formulations

We also tried a disaggregated flow formulation [2] with flow variables

fkℓij =

{
1 if edge (k, ℓ) ∈ E is on the path from anchor i to block j
0 otherwise

3

for all (k, ℓ) ∈ ∆ij = {(k, ℓ) ∈ E : dik + dℓj ≤ αdij}. That is, we only consider edges such that the distance of the
shortest path i, k, ℓ, j is no more than a factor α of the shortest path from i to j. The constraints are very similar to the
aggregated formulation:∑

k∈δ(i)

f ikij − fkiij = xij ∀i ∈ A, ∀j ∈ N \A

∑
ℓ∈δ(k)

fkℓij − f ℓkij = 0 ∀i ∈ A, ∀j ∈ N \A, ∀k ∈ ∆ij \A

∑
k∈δ(i)

fkℓij = 0 ∀i ∈ A, ∀j ∈ N \A

∑
ℓ∈δ(k)

f ℓkij ≤ xik ∀i ∈ A, ∀j ∈ N \A, ∀k ∈ ∆ij \A

fkℓij ≥ 0.

While this formulation is tighter given that we remove the big-M constraints, the memory requirements of this
formulation are too large for full scale problems. For North Carolina, a medium state with 13 districts and 2183 blocks,
the formulation contained 122800365 rows, 143450406 columns, 488095135 nonzero coefficients and took almost an
hour just to construct the model (and then promptly crashed due to memory pressure). It is possible that more aggressive
variable fixing and clever engineering effort could ameliorate these challenges but we did not pursue this line of inquiry
further.

2.3 Variable Fixing

To reduce the size of the problem we experimented with variable fixing, that is, setting xij = 0 for pairs of anchors and
blocks which are unlikely to be feasible let alone optimal. Our first thought was just to set xij = 0 if i was not within
the Γ closest anchors. However, this does not work well for blocks where there is a steep gradient in population density.
It may be the case that all of the close anchors are in a large urban area, but in an optimal (or even feasible) plan, these
blocks would be assigned to a much more distant rural anchor.

Instead, we leverage the fact that at each iteration we have a feasible plan as a warm start. In particular, we set the
bound as

xij ≤
{
1 if block j is assigned to a district adjacent to district i
0 otherwise.

In other words, we further restrict the blocks to only be assigned to neighboring anchors in the warm start solution.
This accommodates for population density gradients and other geographic features that affect the range of feasible
assignments. Of course, fixing xij to 0 also allows fixing fijk to be 0 for all k.

3 Anchors

The obvious question we have deferred until now is: how do we choose anchors?

In theory, we would like a routine which uses the faster to solve O(nk) formulation above as a subroutine to find a
globally optimal solution. To study convergence, we introduce the concept of an anchor invariant formulation. The
defining property of an anchor invariant formulation is that, for a globally optimal districting plan, any choice of anchors
such that each district contains exactly one will yield the same optimal solution. In other words, anchors only affect the
feasibility of an optimal solution, not the objective value. We note that the base formulation is anchor invariant, and that
all of the extensions are anchor invariant with the notable exceptions of dispersion and flow based compactness (i.e., the
tractable compactness metrics).

When the number of districts is small, we can do random sampling to obtain a simple probabilistic bound on the number
of samples/iterations until optimality. In particular, it is the probability of sampling k elements from a set of n elements
(without replacement) that are implicitly partitioned into k sets, where each of the k elements are from different sets:

k−1∏
i=0

1− (i− 1)

k
(19)

assuming each district has exactly n/k blocks. For larger numbers of districts this bound is useless, and we would expect
the vast majority of randomly sampled anchor sets to be infeasible. One could likely make this bound substantially

4

Figure 1: Districting plans optimized under different objective values.

tighter by exploiting the fact that these k sets are spanning trees of the underlying adjacency graph, but that is outside of
the scope of this work.

In practice, there might be several natural choices of anchors, such as the home precincts of the incumbents to prevent
"hijacking" gerrymanders, the historic center of a district, or the main town or geographic area associated with a district.
Again, if we use an anchor invariant formulation, and we condition on no two incumbents being put into the same
district (or similar disjoint criterion), then the solution is globally optimal. Of course, the number of districts may
change between cycles, or we may not want to preserve incumbency advantages, so we cannot rely on such conditions.

A more general approach is to use a heuristic similar to Lloyd’s algorithm for k-means. That is, starting from some set
(like incumbent home locations, or the centroid of an existing or random plan), we iteratively solve the above MIP, and
then use the blocks nearest to the optimized district centroids as the next set of anchors, and continue this iteration until
there are no updates. While this only gives locally optimal solutions, we can utilize random restarts to get what are
likely globally optimal solutions.

4 Results

Given the difficulty of the formulation, it was challenging to perform thorough full-scale experiments. Our main
experimental result involve running our algorithm for a few different political and compactness objectives in North
Carolina (see Figure 1. We comment on high level findings and attach some of our solver logs in the appendix.

We first create a random plan using a recursive spanning tree algorithm [3]. We then get the first set of anchors by
taking the blocks nearest the population weighted centroid of the districts in the initial plan. We then iterate, using our
formulation described in Section 2 with a one hour timeout, continuing to update the anchors to be the new centroids
until there are no updates in the location of the anchors. We also always use the previous assignment as a warmstart.

We find that optimizing for compactness objectives, especially flow distance, is extremely fast, usually taking no more
than a few seconds per iteration while converging in a very small number of iterations. The political objectives, in
contrast, always take the full hour and usually timeout with a double digit gap (see Appendix). The solver spends a long
time at the root node, generating hundreds or thousands of flow cover cuts in addition to hundreds of mixed-integer
round cuts and a mix of all others. Nevertheless, the gerrymandering capabilities are quite impressive (see Figure 2
which also records the anchors and objective value of the iterations). Due to the piecewise-linear nature of the objective,
the optimal solution tries to make as many districts as possible have 55% Republicans (at estimate 95% probability of
victory), and manages to get a full 11/13 districts to about this threshold.

5

Figure 2: Anchors and objective value when optimizing for expected Republican seat share.

5 Conclusions

Our results show the scalability is mixed. We initially expected our algorithm would require O(10) iterations taking
each O(1min) but it turned out be closer to O(1) iterations taking O(1hr). Potential ideas for future work include

• More aggressive variable fixing, potentially only add xij for j in an incident county to district i from the
previous iteration.

• Use disaggregated flow formulation but with column generation of flow paths.
• Decay the value of M further away from the anchor.
• Derive valid inequalities to tighten the formulation.
• Gurobi tuning to find better solver parameters.
• Fix the bug which causes the western most district to never change.

References

[1] Sidney Wayne Hess, JB Weaver, HJ Siegfeldt, JN Whelan, and PA Zitlau. Nonpartisan political redistricting by
computer. Operations Research, 13(6):998–1006, 1965.

[2] Hamidreza Validi, Austin Buchanan, and Eugene Lykhovyd. Imposing contiguity constraints in political districting
models. Operations Research, 2021.

[3] Daryl DeFord, Moon Duchin, and Justin Solomon. Recombination: A family of markov chains for redistricting.
arXiv preprint arXiv:1911.05725, 2019.

A Example Solver Log

Solver log for Republican gerrymander with flow distance regularization of 10−5.

6

Set parameter TimeLimit to value 3600
Set parameter MIPGap to value 0.001
Set parameter MIPFocus to value 1
Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (mac64[rosetta2])
Thread count: 10 physical cores, 10 logical processors, using up to 10 threads
Optimize a model with 87216 rows, 185562 columns and 824772 nonzeros
Model fingerprint: 0x5a9f740c
Model has 8228 SOS constraints
Model has 13 piecewise-linear objective terms
Variable types: 157183 continuous, 28379 integer (28379 binary)
Coefficient statistics:

Matrix range [8e-06, 2e+02]
Objective range [1e-05, 1e-05]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]
PWLObj x range [5e-01, 6e-01]
PWLObj obj range [5e-02, 9e-01]

User MIP start produced solution with objective -6.10069 (0.21s)
Loaded user MIP start with objective -6.10069

Presolve removed 13744 rows and 99150 columns
Presolve time: 0.89s
Presolved: 73532 rows, 86472 columns, 550471 nonzeros
Variable types: 55902 continuous, 30570 integer (30565 binary)

Deterministic concurrent LP optimizer: primal and dual simplex
Showing first log only...

Root simplex log...

Iteration Objective Primal Inf. Dual Inf. Time
42087 -1.0810400e+01 0.000000e+00 6.542241e-01 5s
65926 -1.0821663e+01 0.000000e+00 0.000000e+00 8s
65926 -1.0821663e+01 0.000000e+00 0.000000e+00 8s

Concurrent spin time: 1.71s

Solved with primal simplex

Root relaxation: objective -1.082166e+01, 65926 iterations, 8.67 seconds (12.17 work units)
Total elapsed time = 10.24s

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 -10.82166 0 1072 -6.10069 -10.82166 77.4% - 10s
0 0 -10.82059 0 1274 -6.10069 -10.82059 77.4% - 16s
0 0 -10.82049 0 1260 -6.10069 -10.82049 77.4% - 17s
0 0 -10.81982 0 1369 -6.10069 -10.81982 77.4% - 23s

H 0 0 -6.1326211 -10.81982 76.4% - 24s
0 0 -10.81968 0 1385 -6.13262 -10.81968 76.4% - 25s
0 0 -10.81901 0 1530 -6.13262 -10.81901 76.4% - 36s
0 0 -10.81877 0 1508 -6.13262 -10.81877 76.4% - 40s
0 0 -10.81861 0 1807 -6.13262 -10.81861 76.4% - 54s
0 0 -10.81839 0 1863 -6.13262 -10.81839 76.4% - 59s
0 0 -10.81833 0 1655 -6.13262 -10.81833 76.4% - 88s

H 0 0 -6.6923075 -10.81833 61.7% - 91s
H 0 0 -6.9347445 -10.81833 56.0% - 126s

7

H 0 0 -7.2910480 -10.81833 48.4% - 143s
H 0 0 -7.2910580 -10.81833 48.4% - 144s
H 0 2 -7.2910680 -10.81833 48.4% - 145s

0 2 -10.81833 0 1628 -7.29107 -10.81833 48.4% - 145s
H 1 4 -7.3565526 -10.81833 47.1% 1196 539s
H 2 4 -7.4125952 -10.81833 45.9% 154497 539s
H 3 8 -7.5044017 -10.79802 43.9% 110591 607s
H 6 8 -7.6713070 -10.78778 40.6% 75483 607s
H 7 16 -7.8919720 -10.78778 36.7% 66782 2594s
H 15 22 -8.1946217 -10.77172 31.4% 49687 4520s

Cutting planes:
Gomory: 1
Lift-and-project: 108
Cover: 328
Implied bound: 3
MIR: 889
StrongCG: 3
Flow cover: 1275
Network: 102
RLT: 4
Relax-and-lift: 461

Explored 21 nodes (881338 simplex iterations) in 4520.36 seconds (1977.78 work units)
Thread count was 10 (of 10 available processors)

Solution count 10: -8.19462 -7.89197 -7.67131 ... -6.93474

Time limit reached
Best objective -8.194621682188e+00, best bound -1.077172127117e+01, gap 31.4487%
Set parameter TimeLimit to value 3600
Set parameter MIPGap to value 0.001
Set parameter MIPFocus to value 1
Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (mac64[rosetta2])
Thread count: 10 physical cores, 10 logical processors, using up to 10 threads
Optimize a model with 87216 rows, 185562 columns and 824722 nonzeros
Model fingerprint: 0x0feb6a3e
Model has 8228 SOS constraints
Model has 13 piecewise-linear objective terms
Variable types: 157183 continuous, 28379 integer (28379 binary)
Coefficient statistics:

Matrix range [8e-06, 2e+02]
Objective range [1e-05, 1e-05]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]
PWLObj x range [5e-01, 6e-01]
PWLObj obj range [5e-02, 9e-01]

User MIP start produced solution with objective -8.19616 (0.20s)
Loaded user MIP start with objective -8.19616

Presolve removed 16549 rows and 102641 columns
Presolve time: 0.79s
Presolved: 70727 rows, 82981 columns, 517398 nonzeros
Variable types: 53618 continuous, 29363 integer (29342 binary)

Deterministic concurrent LP optimizer: primal and dual simplex
Showing first log only...

8

Root simplex log...

Iteration Objective Primal Inf. Dual Inf. Time
44634 -1.0763093e+01 0.000000e+00 2.877182e-01 5s
56053 -1.0765299e+01 0.000000e+00 0.000000e+00 6s
56053 -1.0765299e+01 0.000000e+00 0.000000e+00 6s

Concurrent spin time: 1.11s

Solved with primal simplex

Root relaxation: objective -1.076530e+01, 56053 iterations, 6.09 seconds (9.34 work units)

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 -10.76530 0 743 -8.19616 -10.76530 31.3% - 7s
0 0 -10.76418 0 1035 -8.19616 -10.76418 31.3% - 12s
0 0 -10.76413 0 987 -8.19616 -10.76413 31.3% - 12s
0 0 -10.76351 0 1090 -8.19616 -10.76351 31.3% - 16s
0 0 -10.76338 0 1073 -8.19616 -10.76338 31.3% - 17s
0 0 -10.76314 0 1252 -8.19616 -10.76314 31.3% - 1064s
0 0 -10.76286 0 1285 -8.19616 -10.76286 31.3% - 1067s
0 0 -10.76269 0 1333 -8.19616 -10.76269 31.3% - 1077s
0 0 -10.76262 0 1337 -8.19616 -10.76262 31.3% - 1081s
0 0 -10.76257 0 1494 -8.19616 -10.76257 31.3% - 1090s

H 0 0 -8.3069511 -10.76257 29.6% - 1092s
H 0 0 -8.5165105 -10.76257 26.4% - 1127s
H 0 0 -8.5456986 -10.76257 25.9% - 1139s
H 0 2 -8.5457086 -10.76257 25.9% - 1140s

0 2 -10.76257 0 1483 -8.54571 -10.76257 25.9% - 1140s
H 1 4 -8.5520719 -10.76257 25.8% 1551 2143s

3 8 -10.31509 2 1400 -8.55207 -10.75982 25.8% 57549 4225s
H 4 8 -8.5533614 -10.75982 25.8% 43162 4225s
H 5 8 -8.6269920 -10.75982 24.7% 39289 4225s

Cutting planes:
Gomory: 2
Lift-and-project: 98
Cover: 264
MIR: 647
Flow cover: 917
Network: 61
RLT: 6
Relax-and-lift: 313

Explored 7 nodes (332835 simplex iterations) in 4225.80 seconds (614.28 work units)
Thread count was 10 (of 10 available processors)

Solution count 8: -8.62699 -8.55336 -8.55207 ... -8.19616

Time limit reached
Best objective -8.626992041630e+00, best bound -1.075494098954e+01, gap 24.6662%
Set parameter TimeLimit to value 3600
Set parameter MIPGap to value 0.001
Set parameter MIPFocus to value 1
Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (mac64[rosetta2])
Thread count: 10 physical cores, 10 logical processors, using up to 10 threads
Optimize a model with 87216 rows, 185562 columns and 824747 nonzeros

9

Model fingerprint: 0x847ded7c
Model has 8228 SOS constraints
Model has 13 piecewise-linear objective terms
Variable types: 157183 continuous, 28379 integer (28379 binary)
Coefficient statistics:

Matrix range [8e-06, 2e+02]
Objective range [1e-05, 1e-05]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]
PWLObj x range [5e-01, 6e-01]
PWLObj obj range [5e-02, 9e-01]

User MIP start produced solution with objective -8.62632 (0.18s)
Loaded user MIP start with objective -8.62632

Presolve removed 10593 rows and 95279 columns
Presolve time: 0.85s
Presolved: 76688 rows, 90348 columns, 567109 nonzeros
Variable types: 58081 continuous, 32267 integer (32240 binary)

Deterministic concurrent LP optimizer: primal and dual simplex
Showing first log only...

Root simplex log...

Iteration Objective Primal Inf. Dual Inf. Time
47482 -1.0781517e+01 0.000000e+00 1.325208e-01 5s
58645 -1.0782453e+01 0.000000e+00 0.000000e+00 6s
58645 -1.0782453e+01 0.000000e+00 0.000000e+00 6s

Concurrent spin time: 1.76s

Solved with primal simplex

Root relaxation: objective -1.078245e+01, 58645 iterations, 6.87 seconds (9.40 work units)

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 -10.78245 0 832 -8.62632 -10.78245 25.0% - 8s
0 0 -10.76545 0 1047 -8.62632 -10.76545 24.8% - 13s
0 0 -10.76544 0 1007 -8.62632 -10.76544 24.8% - 14s
0 0 -10.76510 0 1110 -8.62632 -10.76510 24.8% - 20s
0 0 -10.76497 0 1127 -8.62632 -10.76497 24.8% - 22s
0 0 -10.76462 0 1292 -8.62632 -10.76462 24.8% - 31s
0 0 -10.76435 0 1193 -8.62632 -10.76435 24.8% - 34s
0 0 -10.76431 0 1214 -8.62632 -10.76431 24.8% - 952s
0 0 -10.76421 0 1314 -8.62632 -10.76421 24.8% - 956s
0 0 -10.76412 0 1311 -8.62632 -10.76412 24.8% - 965s

H 0 0 -8.6279178 -10.76412 24.8% - 967s
H 0 0 -8.6468276 -10.76412 24.5% - 984s
H 0 0 -8.6512993 -10.76412 24.4% - 994s
H 0 2 -8.6513193 -10.76412 24.4% - 995s

0 2 -10.76412 0 1303 -8.65132 -10.76412 24.4% - 995s
H 1 4 -8.6797796 -10.76412 24.0% 1774 1052s
H 2 4 -8.7243899 -10.76412 23.4% 30724 1052s
H 3 8 -8.7301665 -10.76050 23.3% 28347 1106s
H 5 8 -8.7793736 -10.76050 22.6% 31115 1106s
H 7 16 -8.7832757 -10.75271 22.4% 25501 1427s

10

H 8 16 -8.7859122 -10.75271 22.4% 22421 1427s
H 9 16 -8.8667521 -10.75271 21.3% 27043 1427s
H 11 16 -8.8832163 -10.75271 21.0% 29925 1428s

15 26 -10.31584 4 1288 -8.88322 -10.74713 21.0% 24613 2071s
H 25 36 -8.8832763 -10.74713 21.0% 89409 2209s
H 26 36 -8.8958841 -10.74713 20.8% 86059 2209s
H 27 36 -9.0544379 -10.74713 18.7% 82933 2209s

35 46 -10.31573 6 1198 -9.05444 -10.74713 18.7% 67720 2216s
H 36 46 -9.0909370 -10.74713 18.2% 65839 2216s
H 37 46 -9.3134462 -10.74713 15.4% 64172 2216s
H 37 46 -9.3755701 -10.74713 14.6% 64172 2216s
H 45 56 -9.4106979 -10.74713 14.2% 53202 2257s
H 51 56 -9.4385129 -10.74713 13.9% 47125 2257s

55 76 -10.31560 8 1116 -9.43851 -10.74713 13.9% 44026 2262s
H 75 86 -9.4785689 -10.74713 13.4% 32741 2305s
H 82 86 -9.4962538 -10.74713 13.2% 30178 2305s

85 106 -10.31555 9 1120 -9.49625 -10.74713 13.2% 29184 2311s
105 126 -10.31556 11 1118 -9.49625 -10.74713 13.2% 24098 2325s

H 125 136 -9.4962638 -10.74713 13.2% 20607 2377s
H 126 136 -9.4963538 -10.74713 13.2% 20464 2377s
H 127 136 -9.5274056 -10.74713 12.8% 20314 2377s

135 166 -10.31542 13 1103 -9.52741 -10.74713 12.8% 19222 2382s
H 165 176 -9.5274156 -10.74713 12.8% 16161 2438s
H 165 176 -9.5377598 -10.74713 12.7% 16161 2438s
H 166 176 -9.5466375 -10.74713 12.6% 16070 2438s
H 167 176 -9.5559812 -10.74713 12.5% 15986 2438s
H 171 176 -9.5566982 -10.74713 12.5% 15706 2438s
H 172 176 -9.5704353 -10.74713 12.3% 15633 2438s

175 212 -10.31527 17 1101 -9.57044 -10.74713 12.3% 15397 2443s
H 211 222 -9.5765816 -10.74713 12.2% 13125 2469s
H 213 222 -9.5789487 -10.74713 12.2% 13028 2469s
H 214 222 -9.5797060 -10.74713 12.2% 12972 2469s
H 215 222 -9.5849311 -10.74713 12.1% 12919 2469s

221 268 -10.31452 21 1054 -9.58493 -10.74713 12.1% 12653 2476s
H 267 281 -9.5849611 -10.74713 12.1% 10785 2500s
H 268 281 -9.5920986 -10.74713 12.0% 10765 2500s
H 271 281 -9.5966355 -10.74713 12.0% 10666 2500s

280 325 -10.31405 25 1090 -9.59664 -10.74713 12.0% 10366 2508s
H 324 335 -9.6105479 -10.74713 11.8% 9184 2639s
H 330 335 -9.6743019 -10.74713 11.1% 9049 2639s
H 332 335 -9.7334367 -10.74713 10.4% 9004 2639s

334 392 -10.31402 28 1056 -9.73344 -10.74713 10.4% 8963 2645s
391 402 -10.31397 33 1006 -9.73344 -10.74713 10.4% 7920 2843s

H 392 402 -9.7654927 -10.74713 10.1% 7899 2843s
H 394 402 -9.8383143 -10.74713 9.24% 7870 2843s

401 465 -10.31395 34 1001 -9.83831 -10.74713 9.24% 7772 2852s
H 464 489 -9.8411747 -10.74713 9.21% 6952 2868s
H 466 489 -9.8412789 -10.74713 9.20% 6936 2868s
H 483 489 -9.8473196 -10.74713 9.14% 6752 2868s

488 549 -10.31358 40 895 -9.84732 -10.74713 9.14% 6701 2886s
H 505 549 -9.8473399 -10.74713 9.14% 6543 2886s
H 548 577 -9.8475499 -10.74713 9.14% 6166 2902s

576 642 -10.31283 45 852 -9.84755 -10.74713 9.14% 5941 3265s
641 679 -10.31239 52 879 -9.84755 -10.74713 9.14% 5525 3309s

H 663 679 -9.8475599 -10.74713 9.13% 5397 3309s
H 664 679 -9.8546995 -10.74713 9.06% 5390 3309s

678 750 -10.31233 55 854 -9.85470 -10.74713 9.06% 5307 3572s
H 749 798 -9.8550195 -10.74713 9.05% 4965 3600s
H 780 798 -9.8646703 -10.74713 8.95% 4819 3600s

11

Cutting planes:
Gomory: 3
Lift-and-project: 154
Cover: 323
Implied bound: 7
Clique: 4
MIR: 782
StrongCG: 1
Flow cover: 1040
Network: 70
RLT: 6
Relax-and-lift: 390

Explored 797 nodes (3902114 simplex iterations) in 3600.59 seconds (3260.35 work units)
Thread count was 10 (of 10 available processors)

Solution count 10: -9.86467 -9.85502 -9.8547 ... -9.83831

Time limit reached
Best objective -9.864670267723e+00, best bound -1.074712536873e+01, gap 8.9456%
Set parameter TimeLimit to value 3600
Set parameter MIPGap to value 0.001
Set parameter MIPFocus to value 1
Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (mac64[rosetta2])
Thread count: 10 physical cores, 10 logical processors, using up to 10 threads
Optimize a model with 87216 rows, 185562 columns and 824622 nonzeros
Model fingerprint: 0x15806a1d
Model has 8228 SOS constraints
Model has 13 piecewise-linear objective terms
Variable types: 157183 continuous, 28379 integer (28379 binary)
Coefficient statistics:

Matrix range [8e-06, 2e+02]
Objective range [1e-05, 1e-05]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]
PWLObj x range [5e-01, 6e-01]
PWLObj obj range [5e-02, 9e-01]

User MIP start produced solution with objective -9.86967 (0.18s)
Loaded user MIP start with objective -9.86967

Presolve removed 9328 rows and 93318 columns
Presolve time: 0.86s
Presolved: 77953 rows, 92309 columns, 582658 nonzeros
Variable types: 59642 continuous, 32667 integer (32656 binary)

Deterministic concurrent LP optimizer: primal and dual simplex
Showing first log only...

Concurrent spin time: 1.26s

Solved with primal simplex

Root relaxation: objective -1.081600e+01, 52643 iterations, 4.86 seconds (6.61 work units)

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

12

0 0 -10.81600 0 541 -9.86967 -10.81600 9.59% - 6s
0 0 -10.79945 0 700 -9.86967 -10.79945 9.42% - 11s
0 0 -10.79942 0 676 -9.86967 -10.79942 9.42% - 11s
0 0 -10.79893 0 661 -9.86967 -10.79893 9.42% - 15s
0 0 -10.79893 0 798 -9.86967 -10.79893 9.42% - 16s
0 0 -10.79864 0 815 -9.86967 -10.79864 9.41% - 24s
0 0 -10.79839 0 867 -9.86967 -10.79839 9.41% - 26s
0 0 -10.79837 0 902 -9.86967 -10.79837 9.41% - 35s
0 0 -10.79817 0 955 -9.86967 -10.79817 9.41% - 38s
0 0 -10.79817 0 821 -9.86967 -10.79817 9.41% - 45s
0 2 -10.79816 0 808 -9.86967 -10.79816 9.41% - 70s
1 4 -10.75797 1 811 -9.86967 -10.79816 9.41% 65315 122s

H 2 4 -9.8697403 -10.79816 9.41% 32658 122s
H 3 8 -9.8746309 -10.79427 9.31% 29072 152s
H 5 8 -9.8757733 -10.79427 9.30% 27931 152s
H 6 8 -9.8769124 -10.78951 9.24% 25344 152s

7 16 -10.32476 3 833 -9.87691 -10.78951 9.24% 22377 240s
H 8 16 -9.8770024 -10.78951 9.24% 19580 240s
H 11 16 -9.8770324 -10.78951 9.24% 26004 240s
H 13 16 -9.8796232 -10.78260 9.14% 23688 240s

15 25 -10.32446 4 893 -9.87962 -10.78260 9.14% 21229 3929s

Cutting planes:
Gomory: 1
Lift-and-project: 111
Cover: 204
Implied bound: 2
MIR: 567
Flow cover: 737
Network: 49
RLT: 1
Relax-and-lift: 283

Explored 24 nodes (1299753 simplex iterations) in 3929.70 seconds (1350.26 work units)
Thread count was 10 (of 10 available processors)

Solution count 8: -9.87962 -9.87703 -9.877 ... -9.86967

Time limit reached
Best objective -9.879623210978e+00, best bound -1.078259938854e+01, gap 9.1398%
Set parameter TimeLimit to value 3600
Set parameter MIPGap to value 0.001
Set parameter MIPFocus to value 1
Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (mac64[rosetta2])
Thread count: 10 physical cores, 10 logical processors, using up to 10 threads
Optimize a model with 87216 rows, 185562 columns and 824722 nonzeros
Model fingerprint: 0x949ef9bb
Model has 8228 SOS constraints
Model has 13 piecewise-linear objective terms
Variable types: 157183 continuous, 28379 integer (28379 binary)
Coefficient statistics:

Matrix range [8e-06, 2e+02]
Objective range [1e-05, 1e-05]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]
PWLObj x range [5e-01, 6e-01]
PWLObj obj range [5e-02, 9e-01]

User MIP start produced solution with objective -9.87859 (0.18s)

13

Loaded user MIP start with objective -9.87859

Presolve removed 9381 rows and 93353 columns
Presolve time: 0.86s
Presolved: 77900 rows, 92274 columns, 582338 nonzeros
Variable types: 59604 continuous, 32670 integer (32657 binary)

Deterministic concurrent LP optimizer: primal and dual simplex
Showing first log only...

Concurrent spin time: 1.61s

Solved with primal simplex

Root relaxation: objective -1.081487e+01, 52627 iterations, 4.65 seconds (6.03 work units)

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 -10.81487 0 524 -9.87859 -10.81487 9.48% - 6s
0 0 -10.79874 0 638 -9.87859 -10.79874 9.31% - 10s
0 0 -10.79874 0 559 -9.87859 -10.79874 9.31% - 10s
0 0 -10.79823 0 701 -9.87859 -10.79823 9.31% - 13s
0 0 -10.79818 0 834 -9.87859 -10.79818 9.31% - 15s
0 0 -10.79790 0 827 -9.87859 -10.79790 9.31% - 22s
0 0 -10.79778 0 830 -9.87859 -10.79778 9.30% - 25s
0 0 -10.79756 0 863 -9.87859 -10.79756 9.30% - 32s
0 0 -10.79753 0 862 -9.87859 -10.79753 9.30% - 35s
0 0 -10.79753 0 843 -9.87859 -10.79753 9.30% - 42s
0 2 -10.79753 0 834 -9.87859 -10.79753 9.30% - 75s
1 4 -10.75725 1 858 -9.87859 -10.79753 9.30% 17412 86s

H 3 8 -9.8787244 -10.79379 9.26% 11386 110s
H 7 16 -9.8788644 -10.78911 9.21% 16199 154s
H 8 16 -9.8835314 -10.78911 9.16% 14476 154s
H 9 16 -9.8874665 -10.78911 9.12% 16280 154s

15 26 -10.32311 4 973 -9.88747 -10.78206 9.05% 15914 635s
25 36 -10.32300 5 1007 -9.88747 -10.78206 9.05% 46054 645s

H 35 46 -9.8874965 -10.78206 9.05% 36351 652s
H 37 46 -9.8875165 -10.78206 9.05% 34547 652s
H 41 46 -9.8875265 -10.78206 9.05% 32033 652s
H 45 56 -9.8932852 -10.78206 8.98% 29319 718s

55 76 -10.32266 8 961 -9.89329 -10.78206 8.98% 24452 722s
75 86 -10.32195 9 930 -9.89329 -10.78206 8.98% 18590 763s

H 76 86 -9.8936318 -10.78206 8.98% 18346 763s
H 76 86 -9.8936970 -10.78206 8.98% 18346 763s
H 77 86 -9.8945242 -10.78206 8.97% 18141 763s

85 106 -10.32260 10 927 -9.89452 -10.78206 8.97% 16605 766s
105 126 -10.32245 12 882 -9.89452 -10.78206 8.97% 13887 783s
125 136 -10.32209 13 927 -9.89452 -10.78206 8.97% 11962 857s

H 127 136 -9.8996045 -10.78206 8.91% 11780 857s
H 130 136 -9.9232938 -10.78206 8.65% 11563 857s
H 134 136 -9.9296030 -10.78206 8.58% 11305 857s
H 164 176 -9.9296282 -10.78206 8.58% 9597 870s
H 168 176 -9.9302886 -10.78206 8.58% 9430 870s

175 200 -10.32224 17 935 -9.93029 -10.78206 8.58% 9122 992s
H 180 200 -9.9303086 -10.78206 8.58% 8901 992s
H 181 200 -9.9387006 -10.78206 8.49% 8860 992s
H 182 200 -9.9397085 -10.78206 8.47% 8833 992s
H 195 200 -9.9459563 -10.78206 8.41% 8371 992s

14

199 229 -10.32204 18 973 -9.94596 -10.78206 8.41% 8236 1009s
H 200 229 -9.9459663 -10.78206 8.41% 8195 1009s
H 201 229 -9.9460263 -10.78206 8.41% 8164 1009s
H 203 229 -9.9462063 -10.78206 8.40% 8106 1009s

228 278 -10.32200 19 991 -9.94621 -10.78206 8.40% 7431 1129s
277 333 -10.32156 22 938 -9.94621 -10.78206 8.40% 6473 1266s

H 293 333 -9.9463863 -10.78206 8.40% 6191 1266s
332 396 -10.32078 25 1002 -9.94639 -10.78206 8.40% 5651 1412s

H 395 406 -9.9463963 -10.78206 8.40% 4993 1453s
H 404 406 -9.9464463 -10.78206 8.40% 4922 1453s

405 473 -10.32038 30 1005 -9.94645 -10.78206 8.40% 4924 1626s
472 536 -10.32015 35 1011 -9.94645 -10.78206 8.40% 4440 1752s
535 600 -10.32012 37 988 -9.94645 -10.78206 8.40% 4076 2031s
599 613 -10.31948 43 968 -9.94645 -10.78206 8.40% 3826 2090s

H 600 613 -9.9464863 -10.78206 8.40% 3820 2090s
612 681 -10.31949 44 957 -9.94649 -10.78206 8.40% 3777 2234s
680 693 -10.31922 48 945 -9.94649 -10.78206 8.40% 3573 2253s
692 765 -10.31845 49 1044 -9.94649 -10.78206 8.40% 3545 3600s

Cutting planes:
Gomory: 1
Lift-and-project: 117
Cover: 178
Implied bound: 3
Clique: 1
MIR: 486
Flow cover: 651
Network: 63
RLT: 1
Relax-and-lift: 278

Explored 764 nodes (2659211 simplex iterations) in 3600.09 seconds (2166.60 work units)
Thread count was 10 (of 10 available processors)

Solution count 10: -9.94649 -9.94645 -9.9464 ... -9.9387

Time limit reached
Best objective -9.946486312233e+00, best bound -1.078205502090e+01, gap 8.4006%
Set parameter TimeLimit to value 3600
Set parameter MIPGap to value 0.001
Set parameter MIPFocus to value 1
Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (mac64[rosetta2])
Thread count: 10 physical cores, 10 logical processors, using up to 10 threads
Optimize a model with 87216 rows, 185562 columns and 824672 nonzeros
Model fingerprint: 0xabf8c9bf
Model has 8228 SOS constraints
Model has 13 piecewise-linear objective terms
Variable types: 157183 continuous, 28379 integer (28379 binary)
Coefficient statistics:

Matrix range [8e-06, 2e+02]
Objective range [1e-05, 1e-05]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]
PWLObj x range [5e-01, 6e-01]
PWLObj obj range [5e-02, 9e-01]

User MIP start produced solution with objective -9.94733 (0.19s)
Loaded user MIP start with objective -9.94733

15

Presolve removed 9300 rows and 93169 columns
Presolve time: 0.87s
Presolved: 77981 rows, 92458 columns, 583817 nonzeros
Variable types: 59760 continuous, 32698 integer (32677 binary)

Deterministic concurrent LP optimizer: primal and dual simplex
Showing first log only...

Concurrent spin time: 1.71s

Solved with primal simplex

Root relaxation: objective -1.081498e+01, 50601 iterations, 5.02 seconds (6.62 work units)

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 -10.81498 0 570 -9.94733 -10.81498 8.72% - 6s
0 0 -10.79847 0 676 -9.94733 -10.79847 8.56% - 11s
0 0 -10.79847 0 649 -9.94733 -10.79847 8.56% - 12s
0 0 -10.79803 0 651 -9.94733 -10.79803 8.55% - 15s
0 0 -10.79801 0 701 -9.94733 -10.79801 8.55% - 16s
0 0 -10.79763 0 827 -9.94733 -10.79763 8.55% - 23s
0 0 -10.79743 0 809 -9.94733 -10.79743 8.55% - 26s
0 0 -10.79730 0 928 -9.94733 -10.79730 8.54% - 34s
0 0 -10.79723 0 913 -9.94733 -10.79723 8.54% - 36s
0 0 -10.79721 0 792 -9.94733 -10.79721 8.54% - 43s
0 2 -10.79721 0 787 -9.94733 -10.79721 8.54% - 1074s
1 4 -10.75632 1 824 -9.94733 -10.79721 8.54% 27220 1092s
3 8 -10.32449 2 809 -9.94733 -10.79388 8.51% 27952 2028s
7 16 -10.32395 3 827 -9.94733 -10.79054 8.48% 18198 2151s

15 26 -10.32376 4 826 -9.94733 -10.78115 8.38% 20043 2829s
25 35 -10.32362 5 862 -9.94733 -10.78115 8.38% 50342 3600s

Cutting planes:
Gomory: 1
Lift-and-project: 119
Cover: 177
Implied bound: 1
MIR: 531
Flow cover: 672
Network: 47
RLT: 3
Relax-and-lift: 275

Explored 34 nodes (1453806 simplex iterations) in 3600.04 seconds (1066.66 work units)
Thread count was 10 (of 10 available processors)

Solution count 1: -9.94733

Time limit reached
Best objective -9.947326312232e+00, best bound -1.078114711613e+01, gap 8.3824%

Process finished with exit code 0

16

	Overview
	Formulation
	Extensions
	Alternate Formulations
	Variable Fixing

	Anchors
	Results
	Conclusions
	Example Solver Log

