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ABSTRACT

We present a novel approach for efficiently finding high quality solutions to the uniformly capacitated
k-medians problem (UCKMP) with optimality bounds for political districting. Our approach is to
solve the LP relaxation to construct a weighted bipartite graph with weight equal to the value of the
associated LP variable. This bipartite graph is used as the input for a spectral partitioning subroutine
which picks the final k centers. These centers are then used in a transportation problem to do the final
assignment of census tracts to centers in polynomial time. Our approach is scalable because the most
costly part of our algorithm, solving the relaxation, is highly parallelizable and because the tracts
exist in (near) euclidean space, there are a number of natural variable pruning heuristics that greatly
cut down the total number of variables without affecting solution quality. We present an extensive
empirical analysis of using our approach to create congressional districts for American states our of
census tracts.

Keywords Approximation Algorithms · k-medians · Spectral methods · Districting

1 Introduction

The problem of partitioning a space into a disjoint set such that each set satisfies some capacity constraint appears in a
wide variety of application domains. In machine learning, clustering techniques are used to find hidden categorical
structure in data embedded in continuous vector space. In the physical world, splitting up a city or state is a common
problem that arises when creating police precincts, schools districts, political districts, and more. In most of these
domains, the natural objective function is to minimize a distance metric of the assignment of points or land areas to
clusters or districts. This gives rise to the k-medians problem where the objective is to minimize the sum of distances
between points in the cluster and the cluster centroid.

In this study, we focus on political districting problems. In the United States, districting is a political decision. Every 10
years, after the decennial census is completed, state legislatures are responsible for drawing the districts responsible
for electing members of the US House of Representatives as well as the state house and senate maps. As one might
imagine, letting politicians pick their voters has undesirable consequences. In particular, the party in power at the
time of redistricting "cracks" and "packs" areas of opposition voters so that their influence is diluted across multiple
districts or they are all crammed into one district they win by a landslide. Furthermore, this leads to many districts that
are politically very safe for each party. This creates a dynamic in which the only threat to an incumbent is from the
ideological extremes and compromise becomes a bug rather than a feature. It is not hard to predict the gridlock that
logically ensues.

The remedy is therefore to take control of the redistricting process out of the hands of politicians and let voters pick
their politicians rather than the reverse. Seeing as districts must be contiguous and compact, a natural objective function
is to maximize the compactness of the districts. However, there are many different metrics of compactness that one
could reasonably use [1]. The conventional wisdom is that compact districts are politically fair (no party is advantaged)
because they are generated without political consideration. Unfortunately, this turns out not to be true because of
the sharp party divide between rural and urban voters [2]. Nevertheless, having fast routines for generating compact
districts will be an important step in any algorithm that seeks to create fair political districts and represents an important
baseline.



For geographic k-medians problems like school or political districting, the problem input is a set of atomic geographic
units (tracts) that are each assigned to centers. Tracts are defined by a geographic centroid and a population. The set of
possible centers is also the set of tracts and therefore the problem is to pick which tracts are centers and which tracts get
assigned to each center. More formally the general k-medians problem is

minimize
∑

(i,j)∈E

cijxij

subject to
∑
i∈N

yi = k∑
i∈N

xij = 1 ∀j ∈ N

xij ≤ yi ∀i, j ∈ E
yi, xij ∈ {0, 1}, ∀i, j ∈ E

where N is the set of tract indices and E is (for now) N ×N . xij and yi are binary decision variables where yi = 1
indicates that tract ti is a center and xij = 1 indicates that tract tj is assigned to the center tract ti. In most application
domains, certainly political districting, there is an additional set of capacity constraints that bounds the quantity of some
tract attribute (population in our case) for each district. Therefore we add the constraints

yiL ≤
∑
j∈N

pjxij ≤ yiU, ∀i ∈ N

where pj is the population of tract j and U,R are the upper and lower bounds for the population of a district. In general,
cij corresponds to a distance metric between ti and tj . In our formulation

cij = pj‖ti − tj‖α2
which is the moment of inertia measure of compactness described by Young[1]. α is an additional parameter that
dictates how harshly we penalize distance.

k-medians is a specific instance of a more general problem called the facility location problem (FLP). The FLP arises
in situations where you need to fulfill demand by assigning various consumers to facilities that can satisfy all of the
demand with minimum cost. An example is when there are a group of customers with demand for a certain resource
and an operator must decide where to open production facilities to most cost effectively meet this demand. The integer
program has a few differences compared to k-medians. Instead of having fixed k constraint, there is an additional term
in the objective function to account for the fixed costs of opening a facility, and hence the problem is in both assignment
and balancing the cost savings by having facilities closer to customers with the cost of opening more facilities in
choosing k. Furthermore, it is usually natural to allow for a single customer to be served by multiple facilities, and so
xij need not be binary.

Both the FLP and CKMP are NP-hard. Therefore for large problems, it is necessary to use approximation algorithms
and heuristics to find good solutions.

2 Related Work

Given the great practical importance of the FLP and capacitated k-medians problem, significant previous work exists
[3]. The history has evolved around solving uncapaticated k-medians, which was built on work for the FLP, and the
capacity constraints are added later.

The work in uncapacitated k-medians can largely be placed in three buckets: LP-rounding [4], primal-dual[5], or local
search analyses [6]. Unfortunately, Jain et al. proved that the uncapacitated k-median problem is hard to approximate
within a factor of 1 + 2/e. Furthermore, the natural LP-relaxation of the UKMP has an integrality gap of at least 2
and with an upperbound of 3 [7]. The best known approximation algorithm is a (2.675 + ε)-approximation based on
dependent rounding [8].

Things get worse when adding capacity constraints. The integrality gap of the natural capacitated relaxation is
unbounded [3]. Moreover, much of the current work does not guarantee satisfaction of the capacity constraints or the k
centers constraint. For example, Byrka et al. give an O(1/ε2)-approximation by violating the capacity constraint by a
factor of (2 + ε) [9]. Shi Li instead presents an O(exp(1/ε2))-approximation that violates the k centers constraint by
a factor of (1 + ε) [10]. It should also be noted that there are slightly different variants of the CKMP. First there is a
distinction between uniform and nonuniform CKMP where the capacity constraints either are or are not the same for all
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centers or facilities. Second, there is a hard and soft version of CKMP where hard implies that a center or facility can
be opened just once and for soft more than once. In districting, we are solving the hard uniform capacitated problem.

There is also extensive literature in using algorithms for political districting also known under the more general term of
supervised regionalization methods [11]. The taxonomy of methods is first split into methods that explicitly enforce
spatial contiguity and those that do not. Although political districts are required to be contiguous, in optimizing
compactness it is very rare that an output will ever not be contiguous and so we do not have an explicit enforcement
mechanism in our approach. In terms of technique, most approaches are based on clustering, optimization models of
compactness, or local search approaches. See Duque’s excellent survey for references to specific papers. [11].

3 Approach

Our approach was motivated by the observation that we could significantly decrease solve times of the capacitated
k-median integer program by not using all census tracts as centers. In particular, the time it took to solve the relaxation,
and then solve the integer program with only the centers that were nonzero in the relaxation solution, was about 5-10x
faster than solving the full IP from scratch with almost no loss in solution quality. However solving the relaxation was
still time consuming even for smaller problems and so to scale to California with over 8000 census tracts the objective
was to first reduce the size of the problem.

3.1 Pruning

In our analysis we work with 2 flavors of variable pruning, one to reduce the set of centers and one to reduce the set of
assignment variables. As a reminder, in the full problem we have a set N of tracts and a set E, that is N ×N in the full
problem, referring to the assignment of tracts to centers. It is useful to think of this as a complete directed (where the
arcs indicate the direction of assignment) graph where the problem is to prune edges that will not be needed in the final
assignment.

The first style of pruning is distance based pruning of the xij assignment variables. In California, a census tract in San
Francisco and a tract in Los Angeles will never be in the same district. However, the question becomes how far away
do two tracts have to be from each other before we prune them? A distance too short will create an infeasible model
and a distance too far will be intractable to solve. Our approach is motivated by the fact that the infeasible models are
infeasible because of the capacity constraint. Therefore we threshold the radius based on the total population of tracts
within that radius. More formally, let the function

R(ti, p) := minr(
∑

j:d(ti,tj)<r

pj) > p

denote the minimum radius around ti that contains at least population p. For a center ti we let the set of tracts Ti
allowed to be assigned to ti be

T βi = { j | d(ti, tj) < R(ti, βP/k)}
where P is the total population of all census tracts, k is the number of districts, and β is the pruning parameter which
we analyze empirically (results in section 4). In practice to compute function R, we do a binary search over the radius
with precomputed distances. The cost is minimal especially given the savings in both model construction and solving
the relaxation.

The other style of pruning we perform is randomized pruning of centers. It is overkill to allow every census tract to
be a center, given that for a particular solution, one could change every center (and corresponding assignment) to a
neighboring tract and the solution would be approximately the same. 1 Since the number of variables and constraints
increases by a factor of the number of centers, randomly cutting centers gives a significant decrease in execution time
without much of a cost to solution quality. This leads to an additional parameter φ, the probability that we delete a
center. Each center is assigned a number uniformly at random between 0 and 1 and those yi with random value less
than φ are pruned, along with xij variables that corresponded to assignment to center i.

1It is possible that the solution stay the exact same but the objective function increases because the assignment is still optimal,
there just happens to be a choice of centers that have smaller total distance.
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Putting it all together, given parameters β and φ instead of variable sets N and E, we have a center set

Cφ = { i | urandom(i) > φ}

and pruned edge set
Eφβ = { (i, j) | i ∈ Cφ, j ∈ T βi }.

3.2 LP solve

With aggressive initial variable pruning, the LP is solved much more efficiently 2. However, simplex and its variants still
struggle to converge for even modestly sized problems. In our experiments, we found the barrier method, an interior
point optimization scheme, much more effective at quickly converging. The problem with interior point methods is that
they do not maintain a basis like simplex, and therefore can’t be used directly to warmstart the IP without an expensive
crossover step. Fortunately, we only use the LP solution to inspect nonzero centers to further prune the set of centers
down to the k final centers before solving the IP. Therefore we don’t need a basis and hence can avoid crossover.

There are a few more drawbacks associated with this approach. First, pruning makes the associated LP bound only
valid for the pruned problem, and not the full problem and so we lose our ability to bound the full solution. With
φ = 0 and β near k a bound would still hold but this doesn’t achieve much cost savings and could take hours or days to
compute for California. Furthermore, the barrier method is memory intensive so both time and space become practical
constraints. Additionally, as an interior point method, barrier solutions typically have many near 0 yi activations. We
employ optimistic rounding here to threshold near 0 values to assume they are 0. However, the benefits of this overall
approach still outweigh the costs. In particular, the barrier method is parallelizable, and therefore simply throwing more
computing power at the problem will go a long way in scaling our approach to larger problem instances.

3.3 Spectral selection

Even with random center pruning at the onset, and further center pruning from setting near 0 centers in the LP solution
to 0, for large problems it is still too expensive to solve the integer problem to be useful in practice. In particular,
simplex still has trouble even solving the root of the branch-and-bound tree and to use the barrier method we now need
to perform crossover which is often more expensive than getting the LP to converge. Setting k fixed centers transforms
this problem from k-median to a transportation problem 3 which is solvable in polynomial time. Therefore to make the
integer program as fast as possible to solve, the natural strategy is to fix the k centers.

To do this we construct the following weighted bipartite graph

B = (Cφ ∪N, Eφβ | weight(eij) = xij)

where Cφ is the set of left vertices corresponding to centers, N is the set of right vertices corresponding to each tract,
and the edge weights are the activations of the corresponding assignment variable for center i and tract j. If this
graph were constructed from the optimal integer solution then it would be the case that there are simply k connected
components (if we remove centers with no nonzero incident edges) and the minimum weight cut to form a k-partition is
trivially the empty set. Since this graph is formed from the relaxed solution, there are many low weight fractional edges
and there is probably only one connected component. However, it is still the case that there exists a very low weight
edge set that could be cut to form k connected components. Spectral partitioning is just the tool to find this k-partition.

With the k components returned by spectral partitioning, each component has a set of center nodes Sci ⊂ Cφ and a set
of tract nodes Sti ⊂ N for partition i. The sets St1, . . . , S

t
k form a compact and contiguous districting (empirically) but

there is nothing to enforce population balance of these sets. Instead we just use the sets Sci , and for each set we take a
weighted average of the cluster, weighted by the activation of the yi variable from the LP solution corresponding to
each center in the set. Finally we find the census tract with centroid closest to each of the cluster averages, and call
this collection of tracts the final collection of centers Cfinal. Note that we only consider non pruned centroids. This is
just to be consistent with the LP so the bound is still valid but for situations where the bound is irrelevant this isn’t
necessary. Figure 1 depicts what this process looks like on a synthetic example.

2It makes a significant different in model construction too which is not a trivial cost component.
3Named so because it comes from an application domain where you have k supply points and many demand points and the

problem is to decide what demand gets satisfied from which supply points.
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Figure 1: Top left is activations of yi variables in the LP solution (with no pruning) of a synthetic graph with 1250
nodes and 8 districts. Top right is the resulting clusters. Bottom left are the centers resulting from the weighted average.
Bottom right are the population unbalanced Sti sets. Note the synthetic graph does not have uniform population which
is why for instance the yellow district is larger than the bottom left blue district.

3.4 IP solve

With the k centers selected, solving the IP now becomes very efficient because it is a transportation problem solvable in
polynomial time. There is now no need to for yi variables and the variable set becomes

EIP = {xij | i ∈ Cfinal, j ∈ T βi }

The final assignment is then the final districting and this is guaranteed to be population balanced. In some cases, if
the population radius factor parameter β is too small or the population tolerance is too small for the average number
of tracts per district, the model will be infeasible. In this case raising β, raising the population tolerance, or using a
subtract atomic geographic unit instead will help.

Now for a complete description of the algorithm. Let

LP_KMED : IP_TP :

minimize
∑

(i,j)∈Eφβ
pjd

α
ijxij minimize

∑
(i,j)∈EIP

pjd
α
ijxij

subject to
∑
i∈Cφ

yi = k subject to∑
i∈Cφ

xij = 1 ∀j ∈ N
∑

i∈Cfinal
xij = 1 ∀j ∈ N∑

j∈Tβi

pjxij ≤ yi(1 + ε)
P

k
∀i ∈ Cφ

∑
j∈Tβi

pjxij ≤ (1 + ε)
P

k
∀i ∈ Cfinal

∑
j∈Tβi

pjxij ≥ yi(1− ε)
P

k
∀i ∈ Cφ

∑
j∈Tβi

pjxij ≥ (1− ε)P
k

∀i ∈ Cfinal

0 ≤ xij ≤ yi ≤ 1, ∀i, j ∈ Eφβ xij ∈ {0, 1}, ∀i, j ∈ EIP
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where LP_KMED and IP_TP return their variable values.

Algorithm 1: k-medians approximation using spectral selection

Cφ = { i | urandom(i) > φ};
T βi = { j | d(ti, tj) < R(ti, βP/k)} ∀i ∈ Cφ ;
Eφβ = { (i, j) | i ∈ Cφ, j ∈ T βi } ;
{xij}, {yi} = solve(LP_KMED(Eφβ , k)) ; // solve using barrier method
B = (Cφ ∪N, Eφβ | weight(eij) = xij) ;
Sc1, . . . , S

c
k = spectral_partition(B) ; // keep only the left vertex set - the centers

Cfinal = argmini∈Cφ{ dist(ti, mean(Sc` ) } ∀` ∈ [1 : k] ;
EIP = {xij | i ∈ Cfinal, j ∈ T βi } ;
return solve(IP_TP(EIP )) ; // district i is comprised of tracts j where xij = 1

4 Results

To test our algorithm, we chose to use the exact distribution of problems we were designing for - American states with
k set to the current number of congressional, state senate, and state assembly representatives. The atomic geographic
units are the from the TIGER shapefiles used by the census to store census tracts [12]. Additionally, data from the 2017
American Community Survey was used to get population estimates for each census tract [13].

We performed our computational experiments using a Dell R620 with two Intel Xeon E5-2680 2.70GHz 8-core
processors and 96GB of RAM. For software, Gurobi v9.0.1 was used to solve the k-medians relaxation using the
barrier method, and to solve the transportation problem integer program. We used Sklearn for the spectral partitioning
implementation and NetworkX for managing graphs. Code, data, and results are made publicly available 4.

In our experiments we did a random order grid search over the following parameter space:

• Population factor pruning radius - β ∈ [2, 4, 6, 8]

• Random center pruning ratio - φ ∈ [0, 0.5, 0.75]

• Cost exponential - α ∈ [1, 1.5, 2]

• Population tolerance - ε ∈ [0.01, 0.025, 0.05]

Furthermore, we only ran a (state, k) trial if the number of census tracts in the state divided by k was greater than 75.
This gave us 49 (state, k) combinations and with a parameter space of 108 combinations that is 5292 trials in total. In
our analyses we make the distinction between big, medium, and small problems where k ≥ 20, 5 < k < 20, k ≤ 5
respectively.

Finally, as a baseline we also try solving the transportation problem with centers selected from a k-means heuristic.
That is we input each tract with its centroid location and population and compute a k-means approximation using
Lloyd’s algorithm where points are weighted by their population. Like before, we then find the tracts that are closest to
the exact centers and solve the transportation problem with these centers. Since this is fast, we perform it multiple times
(uniformly at random between 1 and 20) and take the best solution.

4.1 Feasibility

The first important analysis is understanding feasibility. Too aggressive xij pruning for large problems will result in a
search radius that is too small and will be infeasible. The worst case is when optimal centers are near dense urban areas.
These are centers that probably won’t have any assignment from the city tracts but because they are so close to the city,
the available assignment radius is too small for it to reach tracts that should be assigned to it in the optimal solution.

Population tolerance also plays a role in feasibility because for a state that barely makes our cutoff, there might only be
about 75 tracts per district which could be a problem when you have a 1% tolerance. However, in general a stricter
tolerance only forces minor perturbations of the boundary tracts to make sure everything is balanced. Table 1 shows
how feasibility for the transportation problem integer program varies with population tolerance ε and the pruning radius
parameter β for both our spectral selection approach and the k-means baseline.

4https://github.com/wesg52/Kmedians
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Spectral selection
ε, β 2 4 6 8

0.01 38.83 79.63 84.03 94.13
0.025 43.12 81.51 87.99 95.00
0.05 43.78 84.5 90.60 96.09

k-means selection
ε, β 2 4 6 8

0.01 16.76 83.33 90.91 93.37
0.025 18.52 81.51 90.08 93.50
0.05 18.91 83.98 92.17 94.27

Table 1: Percent feasible given population tolerance and distance pruning

Figure 2: Percent feasible given number of tracts and number of districts

As one might expect, larger states are infeasible the most as shown by figure 2. In particular, they are basically always
infeasible with pruning radius less than 6. Only states with less than about 4 districts are feasible with radius 2, the
lowest pruning radius we tried. Unfortunately, one has to solve the full LP relaxation (usually >95% of the total run
time cost) before we can know the feasibility of the IP and therefore one would want to dynamically set the tolerance
conservatively. Since the k-means feasibility results are similar and much faster to compute, finding β with a feasible
k-means solution could serve as a good approximation.

Lastly to help population tolerance feasibility issues one should use a smaller atomic geographic unit. The census also
offers census blocks which are of subtract granularity with population estimates. For smaller states this is necessary to
compute districts for state legislatures, but the scaling properties should all be the same.
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4.2 Barrier Convergence

As was discusses earlier, we use the barrier method, an interior point, method because it is much faster to converge and
benefits from parallelism. Unlike simplex, which has a very large number of very fast iterations, barrier has very few
iterations, each of which can take on the order of seconds. In figure 3 we plot the cumulative counts of when the barrier
method passes a primal-dual gap threshold for small, medium, and large problems ( k ≤ 5, 5 < k < 20, k ≥ 20).

Figure 3: Cumulative counts of barrier method primal-dual threshold gap by problem size

It is important to note that for every experiment we set the barrier solver to stop if it reached a solution with gap less
that 0.01% or 30 minutes elapsed, whichever comes first. Since the LP is only used for finding good centers, it isn’t
necessary to solve to as small a gap as we did, and one could save a lot of time in the process. However, we noticed that
the clusters aren’t as tight when the gap is larger, and therefore the quality of the centers produced by spectral selection
might deteriorate. A line of future work is to investigate this tradeoff.

4.3 Objective Gaps

Our most exciting result is the performance of our spectral selection method as judged by the gap between the best
integer solution and the best fractional solution, especially compared to the k-means selection baseline.

gap total β=2 β=4 β=6 β=8 φ=0.0 φ=0.5 φ=0.75 ε=0.01 ε=0.025 ε=0.05 big medium small

0.1 34.83 59.83 35.07 30.02 28.35 35.73 35.51 33.33 35.15 34.53 34.82 0.0 7.38 71.09
1.0 51.92 79.71 50.27 47.66 45.35 52.82 52.03 50.98 50.6 52.64 52.48 0.24 28.86 88.32
5.0 72.64 92.68 73.43 68.71 66.99 72.51 72.71 72.68 70.38 72.42 75.0 28.1 63.95 92.99
20.0 94.89 98.74 95.01 94.74 93.29 94.19 95.0 95.45 93.7 94.3 96.62 81.43 94.55 98.8
50.0 99.86 100.0 100.0 100.0 99.55 99.57 100.0 100.0 99.83 99.83 99.92 98.81 100.0 100.0

Table 2: Percent trials below IP-LP gap using spectral selection

gap total β=2 β=4 β=6 β=8 φ=0.0 φ=0.5 φ=0.75 ε=0.01 ε=0.025 ε=0.05 big medium small

0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.16 1.6 0.23 0.0 0.0 0.0 0.0 0.48 0.19 0.19 0.09 0.0 0.0 0.36
5.0 4.69 26.74 3.58 3.37 2.97 3.91 4.13 6.03 3.99 4.48 5.59 0.0 0.0 10.5
20.0 23.5 64.71 22.26 21.86 18.85 23.83 22.74 23.95 22.18 23.27 25.02 0.0 11.87 40.47
50.0 63.38 97.86 67.13 63.13 54.6 62.6 63.72 63.79 60.8 64.17 65.12 26.97 56.4 78.43

Table 3: Percent trials below IP-LP gap using k-means selection

However these results come with a few remarks. The first is that the gap is with respect to the pruned IP and the pruned
LP and not with respect to a global LP bound. This was done to preserve consistency and make comparisons fair, but
also because it would be cost prohibitive to find a global LP bound for some medium and all large problems. That being
said, because the xij distance pruning is based on distance, which is precisely the objective function, it is unlikely that
after increasing β well past the point of feasibility there will exist better integer solutions.
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The second is that clearly spectral selection does not achieve small gaps on larger problems. However, because the
integrality gap of the capacitated k-median problem is unbounded, it is not clear how well we could be doing. That is to
say, this is the gap of our solution and the theoretically best fractional solution rather than the theoretically best integer
solution. Since it is cost prohibitive to compute the optimal integer solution for large problems, it is difficult to know
whether the integrality gap is to blame or if the spectral centers are just poorly chosen, perhaps because of poor spectral
cluster density.

4.4 Run time

The last aspect we analyze is overall execution time. Figure 4 depicts the average contribution of each stage of the
algorithm. Preprocessing here is just the time it takes to make the linear program. The MIP timeslice captures both
creating and solving the MIP as it is such a small component. From figure 4 it is obvious the importance of reducing the
runtime of barrier. It also shows that are pruning techniques were helpful in this regard. This is an advantageous place
to be algorithmically speaking, because barrier is parallelizable therefore by Amdahl’s law we can speed up execution
time significantly with more CPU cores.

Figure 4: Total running time broken down by stage and pruning

Figure 5: Total runtime (s) vs number of variables by ε Figure 6: Total runtime (s) vs (n_tracts/k) by ε
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Figures 5 and 6 depict how the runtime is affected by the total number of variables and the ratios of tracts to districts.
Number of variables, as expected, has a very tight correlation with the total runtime. We expected there to be some
difference in the ease of solution based on the ratio of yi to xij variables but none existed. Problems with less restrictive
population tolerances appear slightly easier to solve but only barely. Furthermore there also isn’t a strong correlation
between the tract to district ratio on runtime.

5 Conclusion and Future Work

In this work we presented a novel method for finding high quality capacitated k-medians solutions motivated by a
political districting setting. Our approach was based on efficiently solving the linear relaxation to create an intermediate
structure that admitted a natural partition found via spectral partitioning. The spectral partition was used to pick final
centers to solve a polynomial time transportation problem, rather than an NP-hard k-median problem.

We investigated different pruning techniques to speed up the linear program without affecting solution quality. We
presented a significant empirical study of our algorithm, detailing the behaviours of feasibility, convergence, objective
gaps, and execution time. The purpose of our analysis was not to design the fastest possible algorithm with the smallest
possible gap but provide an understanding of how these parameters effect performance so that we have the intuition to
design such an algorithm.

Future work includes how to scale our approach to the largest states. One promising approach is nested design where
we use an outer loop to split a large state into a few smaller pieces, and then optimize over the pieces. Another line of
inquiry that could speed up solving the LP is early stopping but we need to study how early stopping affects the spectral
selection process. As mentioned earlier, dynamic distance pruning based on k-means results would also be useful to
avoid solving expensive relaxations that turn out to be integer infeasible.
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